Nitric oxide inhibits ATP release from erythrocytes.
نویسندگان
چکیده
Erythrocytes have been reported to release ATP from intracellular stores into the surrounding environment in response to decreased oxygen tension and mechanical deformation. This erythrocyte-derived ATP can then act on purinergic receptors present on vascular endothelial cells, resulting in the synthesis and bidirectional release of nitric oxide (NO). NO released abluminally produces relaxation of vascular smooth muscle, thereby increasing vascular caliber, leading to a decrease in deformation-induced ATP release from erythrocytes. In contrast, NO released into the vascular lumen could interact directly with formed elements in the blood, including the erythrocyte. Here, we investigate the hypothesis that NO functions in a negative-feedback manner to inhibit ATP release from the erythrocyte. The NO donor N-(2-aminoethyl)- N-(2-hydroxy-2-nitrosohydrazino)-1,2-ethylenediamine (spermine NONOate) decreased total pulmonary resistance in a dose-dependent manner when administered to isolated perfused rabbit lungs. ATP release from rabbit erythrocytes in response to decreased oxygen tension or mechanical deformation was inhibited by preincubation with spermine NONOate (100 nM, 20 min). Importantly, incubating rabbit erythrocytes with spermine (100 nM, 20 min), the polyamine remaining after the liberation of NO from spermine NONOate, did not affect decreased oxygen tension-induced ATP release. Mechanical deformation-induced ATP release was also inhibited when erythrocytes were preincubated with spermine NONOate. However, NO-depleted spermine NONOate had no effect on mechanical deformation-induced ATP release from rabbit erythrocytes. These data provide support for the hypothesis that NO inhibits ATP release from erythrocytes, thereby identifying an additional role of NO in the regulation of vascular resistance.
منابع مشابه
NO inhibits signal transduction pathway for ATP release from erythrocytes via its action on heterotrimeric G protein Gi.
The release of ATP from erythrocytes involves a signal transduction pathway of which cystic fibrosis transmembrane conductance regulator, PKA, adenylyl cyclase, and the heterotrimeric G proteins G(s) and G(i) are components. In the pulmonary circulation, ATP released from the erythrocyte stimulates nitric oxide (NO) synthesis, thereby regulating vascular resistance. We reported that NO liberate...
متن کاملErythrocytes of humans with cystic fibrosis fail to stimulate nitric oxide synthesis in isolated rabbit lungs.
Erythrocytes (red blood cells) of either rabbits or healthy humans are required to demonstrate the participation of nitric oxide (NO) in the regulation of pulmonary vascular resistance in the isolated rabbit lung. The property of the erythrocyte that is responsible for the stimulation of NO synthesis was reported to be the ability to release ATP in response to physiological stimuli, including d...
متن کاملExtracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance.
Previously, it was reported that red blood cells (RBCs) are required to demonstrate participation of nitric oxide (NO) in the regulation of rabbit pulmonary vascular resistance (PVR). RBCs do not synthesize NO; hence, we postulated that ATP, present in millimolar amounts in RBCs, was the mediator, which evoked NO synthesis in the vascular endothelium. First, we found that deformation of RBCs, a...
متن کاملHemolysis is a primary ATP-release mechanism in human erythrocytes.
The hypothesis that regulated ATP release from red blood cells (RBCs) contributes to nitric oxide-dependent control of local blood flow has sparked much interest in underlying release mechanisms. Several stimuli, including shear stress and hypoxia, have been found to induce significant RBC ATP release attributed to activation of ATP-conducting channels. In the present study, we first evaluated ...
متن کاملEffects of cocaine on nitric oxide production in bovine coronary artery endothelial cells.
Cocaine decreases coronary artery endothelial-dependent vasorelaxation. To explore the potential mechanisms, the present study examined the effect of cocaine on nitric oxide release in bovine coronary artery endothelial cells (BCAECs). In the absence of cocaine, basal nitric oxide release from BCAECs continued to accumulate in the medium over the period from 6 to 72 h. Cocaine significantly dec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 309 3 شماره
صفحات -
تاریخ انتشار 2004